
Teaching Digital Logic and Computer Architecture Using
Open Source Tools

Bill Siever
Michael Hall
James Feher
Roger Chamberlain

Bill Siever, Michael Hall, James Feher, and Roger Chamberlain, “Teaching
Digital Logic and Computer Architecture Using Open Source Tools,” in Proc.
of 22nd ACM International Conference on Computing Frontiers Workshops
and Special Sessions, May 2025, pp. 53-56.
DOI: 10.1145/3706594.3726971

Presented at 3rd Open Source Hardware Workshop (OSHW), Cagliari,
Sardinia, Italy.

Dept. of Computer Science and Engineering
and
Dept. of Electrical and Systems Engineering
Washington University in St. Louis

Teaching Digital Logic and Computer Architecture Using Open
Source Tools

Bill Siever
Washington University in St. Louis

St. Louis, Missouri, USA
bsiever@gmail.com

Michael Hall
Washington University in St. Louis

St. Louis, Missouri, USA
mhall24@wustl.edu

James Feher
Washington University in St. Louis

St. Louis, Missouri, USA
jdfeher@wustl.edu

Roger Chamberlain
Washington University in St. Louis

St. Louis, Missouri, USA
roger@wustl.edu

Figure 1: Full adder visual simulation.

Abstract
A recent redesign of the digital logic and computer architecture
courses at Washington University in St. Louis exploits developer
containers and open source tools to provide students with a low-
cost, portable tool suite for hardware design. Here, we describe the
tool flow used by the students and articulate the motivation for and
benefits from utilizing this approach.

CCS Concepts
• Hardware→ Electronic design automation; • Software and
its engineering→ Open source model; • Social and profes-
sional topics→ Computer engineering education.

Keywords
Digital Logic, Computer Architecture, Field Programmable Gate Ar-
rays, FPGAs, Developer Containers, Dev Containers, Visual Studio
Code, VS Code, RISC-V

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF Companion ’25, Cagliari, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1393-4/25/05
https://doi.org/10.1145/3706594.3726971

ACM Reference Format:
Bill Siever, Michael Hall, James Feher, and Roger Chamberlain. 2025. Teach-
ing Digital Logic and Computer Architecture Using Open Source Tools. In
22nd ACM International Conference on Computing Frontiers (CF Companion
’25), May 28–30, 2025, Cagliari, Italy. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3706594.3726971

1 Introduction
In the fall semester of 2024, the McKelvey School of Engineering at
WashingtonUniversity in St. Louis engaged in a refresh of two of the
fundamental courses in the BS Computer Engineering program: the
introduction to digital logic course and the computer architecture
course. As part of that refresh, we decided to make a serious attempt
at using fully open source tools in the delivery of the coursematerial.
The resulting tool suite was the subject of a demo at this year’s
Technical Symposium on Computer Science Education [16].

Both of these courses are required for computer engineering
students, digital logic (a sophomore level course) is required for
electrical engineering students and is an optional technical elective
for computer science students, while computer architecture (typi-
cally taken in the junior year) is an optional technical elective for
both electrical engineering and computer science students. Digital
logic is taught both fall and spring (averaging just over 80 students
per semester this past year) and computer architecture is taught in
the fall (with 25 students in the first offering since the refresh). As
part of the refresh effort, each of the offerings of both courses have

38

CF Companion ’25, May 28–30, 2025, Cagliari, Italy Siever et al.

had two instructors assigned, all of whom are co-authors on this
paper. Both the Department of Computer Science and Engineering
and the Department of Electrical and Systems Engineering share
curricular responsibility for the computer engineering program and
the contents of both courses.

In this paper, we describe the tool flow used by the students to
perform digital hardware design from design entry through simula-
tion, synthesis, place & route, to deployment on an FPGA. Almost
100% of the infrastructure used to support this tool flow comes from
the open source community, and the number of distinct tools is
considerable. Detailed usage instructions are provided at [15].

2 Past Practice and Present Motivation
Both of the two courses are fairly traditional in the topics covered
and their overall scope. The digital logic course covers binary num-
ber systems, Boolean algebra, combinational and sequential system
design, an introduction to a simple instruction set architecture, and
a basic fetch-execute engine. The computer architecture course
covers single-cycle, multi-cycle, and pipelined implementations
of an instruction set architecture in addition to topics in memory
subsystems (including virtual memory), I/O subsystems, and cache
coherence protocols.

Historically, these courses used VHDL as the hardware descrip-
tion language and the Xilinx proprietary FPGA tool flow for design
and implementation of digital designs. A fresh redesign of the two
courses was triggered by 3 concurrent events: (1) a long-serving
member of the faculty who had taught both courses for a number
of years retired, (2) the textbook used in the computer architecture
course went out of print, and (3) the FPGA development boards
(used in both courses) were discontinued by the manufacturer.

As part of the redesign, an early decision was to go in the di-
rection of open source tools, which motivated a number of the
follow-on decisions. The redesign team committed early to the use
of the RISC-V instruction set architecture (given that both the ISA
and any number of available designs are open source). Given the
proliferation of RISC-V designs in SystemVerilog, and its support
in the open source community, switching away from VHDL was
deemed appropriate. The above choices led us to the Harris and
Harris text, Digital Design and Computer Architecture: RISC-V Edi-
tion [4], which we are now using in both courses (supplementing
with some additional material in the computer architecture course).

The above decisions made, we were next challenged to put to-
gether a tool flow guided by the following goals. First, authenticity,
have students use contemporary tools and deploy their designs on
real hardware. Second, cost, use low-cost readily available hardware.
Third, complexity, keep the installation and tool use overheads low.
Fourth, focus, ensure the students are using their available cognitive
load on the subject matter of the course, not on the distractions
inherent in fully-featured commercial tools. Finally, portability, sup-
port the variety of execution platforms used by students, specifically
including Linux, Windows, and MacOS. A number of commercial
tools are limited in the platforms they support.

The Harris and Harris text (and accompanying resource materi-
als) support the Intel Quartus development environment, and we
explored the use of that tool suite, but ultimately decided that we
wanted to go the open source route, driven by the above goals.

3 Tool Flow
Here we articulate the specific tools used in the design flow by the
students, including containerization, design entry, HDL simulation,
synthesis, place & route, FPGA deployment, ISA-level simulation,
and high-level language compilation. The set of tools represents a
broad spectrum of open source contributions by the community
from around the world. The tool flow and hardware used rely heav-
ily on ideas from Bell [1].

3.1 Containers
The use of development containers (or dev containers for short) are
central to the utility of the tool suite we have put together. One of
the real challenges associated with supporting multiple execution
platforms (e.g., Linux, Windows, MacOS) is the complexity associ-
ated with deploying a broad set of tools on each platform. Koskinen
et al. [7] describe how containers are used throughout software
engineering, and Pahl et al. [10] review the use of containers in the
cloud.

By deploying each of the tools described below in a dev container,
there are three options for students to utilize the tool flow.

(1) The entire tool flow can be executed in the cloud, with the
development environment accessed via a web browser.

(2) The entire tool flow can be executed natively on the student’s
local machine. As stated above, all of Linux, Windows, and
MacOS are supported.

(3) A blended execution option is available, in which the devel-
opment environment is run locally, yet the individual tools
are executed in the cloud.

The above options provide maximum flexibility for students, en-
abling the tools to be used in a wide variety of contexts.

3.2 Design Entry and HDL Simulation
Early in the digital logic course, students use schematic capture for
design entry. They then move to the use of hardware description
languages, specifically SystemVerilog. The computer architecture
course explicitly uses SystemVerilog for design entry.

The schematic capture and simulation tool used is JLS: Java Logic
Simulator. Originally authored by Poplawski [11], it has been up-
dated and binaries are provided for Windows and MacOS, as well as
a generic JAR for all platforms [14]. Students use JLS for schematic-
level designs of both combinational and sequential circuits. They
can test the behavior and correctness of their work by applying
test vectors. Moreover, JLS can be used for automated unit tests on
student work.

Once development moves to SystemVerilog, the students use
an IDE, working extensively in VS Code with HDL support for
syntax highlighting, etc., by Hiramori [5]. Linting and simulation
is performed using Verilator [17] and/or Icarus Verilog [23].

An important component in the use of hardware description lan-
guages is the utility of generating testbenches. Currently testbench
generation is all done via SystemVerilog; however, we are investi-
gating the potential use of cocotb [2] to enable the development of
testbenches using Python.

39

Teaching Digital Logic and Computer Architecture CF Companion ’25, May 28–30, 2025, Cagliari, Italy

Figure 2: Synthesized full adder.

3.3 Synthesis and Place & Route
Synthesis and place & route use Yosys + nextpnr [13, 24]. Once
synthesized, DigitalJS [8] is used for visual interactive simulation
(see Figure 1). By clicking on inputs, students can see the effects of
the input changing through the circuit.

Figure 2 shows the synthesized full adder. Note that this repre-
sents a different implementation relative to the full adder of Figure 1,
using different primitive gates.

3.4 Deployment to an FPGA
The physical FPGA board that we use is the open source UPduino
platform [20]. The specific FPGA is a Lattice Semiconductor Ul-
traPlus ICE40UP5K. The board, shown in Figure 3, features an
on-board FPGA programmer, flash and LED with all 32 GPIO pins
on 0.1" headers.

Figure 3: UPduino Lattice UltraPlus iCE40 FPGA board [20].
Image credit: Gregory Benjamin.

Once a bitstream file has been created, it is loaded onto the
UPduino using openFPGALoader [3], which has native installs for
Linux, Windows, and MacOS. When the development environment
is running in the cloud, YoWASP [26] enables loading from the
browser through the use of WebAssembly.

Initially, the students construct simple digital I/O features (e.g.,
switch inputs, LED outputs) to exercise their deployed bitstreams.
Figure 4 is an example from an assignment in the digital logic
course. Subsequently, they graduate to a more full-featured I/O
board (see Figure 5), that contains 7-segment LEDs and multiple
buttons. It interfaces to the FPGA using the TM1638 driver chip
via a synchronous serial bus. A locally developed driver (available
at [15]) provides digital input and output ports for a design on the
FPGA and transitions those ports to the physical inputs and outputs
on the I/O board.

Figure 4: Wiring diagram for switch inputs (drawn using the
fritzing [6] package).

Figure 5: Digital I/O board.

3.5 RISC-V Tools
The digital logic course implements a subset of the RISC-V ISA on
the FPGA, while the computer architecture course both expands
this subset and includes the design and implementation of a cache
(since the UPduino does not have an external memory, both main
memory and cache are deployed in on-chip memory resources). In
both cases, the students need to generate RISC-V instructions to
execute on their constructed processor(s).

When studying the ISA and its associated assembly language,
the students utilize the Venus RISC-V instruction set simulator [21],
originally developed by Keyhan Vakil andmore recently maintained
by Steven K. (aka ThaumicMekanism). It has been integrated into VS
Code [22], facilitating ease of use for the students. RISC-V assembly
support for syntax highlighting is provided by Sun [19].

40

CF Companion ’25, May 28–30, 2025, Cagliari, Italy Siever et al.

For programs written in a high-level language, compilation from
C and/or C++ is supported by the GNU RISC-V compiler [12].

4 Discussion
Themotivation for this work includes authenticity of the experience,
cost to students, complexity of the tools, supporting a focus on the
task at hand, and portability across multiple platforms.
• Authenticity. All of the tools used here are effective at digital
system design and are used by a wide community, includ-
ing many commercial firms. Even though some tools are
designed explicitly as teaching tools, they still perform the
functions appropriate to the task at hand. The result is a
learning experience for students that is effective at giving
them an authentic design experience.
• Cost. The only cost incurred by students is the physical
hardware, as almost all of the software is open source and the
rest is free to use. For example, if executing the tools in the
cloud, the cloud provider, Microsoft, provides a modest time
budget to students at no charge. In addition, the hardware is
quite inexpensive, with the UPduino costing under $40 and
the I/O board available for under $10.
• Complexity. The installation and tool use overheads are held
to a minimum through the effective use of containers, which
are designed for that very purpose.
• Focus. While our desire is to put together a tool suite that
does what needs to be done, but not lots of other things to
distract the students, this is inherently a difficult task. The
current collection of tools is somewhat more organized (i.e.,
separate tools for separate tasks). However, the inherent
differences that are present in the tasks to be performed
(and the fact that they were developed by a diverse set of
individuals) imply that there are variations in user interfaces
that can be confusing. In our opinion, this is the one area
where we were not uniformly satisfied with the end result,
but we came awaywith a better understanding of its inherent
challenges, and we also believe the result is an improvement
on commercial tools.
• Portability. With containerization, the entire tool flow can
run natively on Linux, Windows, MacOS, or the cloud. This
is considerably broader coverage than is typically supported
by many of the commercial tools.

5 Conclusions and Future Work
The result of this effort is a suite of FPGA development tools that
are multi-platform (and therefore portable), inexpensive (thirteen
of which are open source, all of which are free to use), and effective
for the task at hand. These features enable their use in a broad set
of contexts, ranging from large schools with plenty of instructional
support, to small schools where the instructor is also responsible for
tools used in the classroom. See [15] for detailed usage instructions
and pointers to all the tools.

There are a number of directions we would like to expand this
effort. We have already mentioned the desire to enable testbench de-
velopment in Python, which is supported by cocotb [2]. In addition,
the ability to observe internal signals in hardware via in-circuit
debugging support can be extremely helpful, a capability supported

by Manta [9]. Finally, high-level synthesis compilers have recently
gotten to the point that they are effective in many contexts, e.g.,
spacecraft [18]. Our group is exploring open source HLS compilers
such as ScaleHLS [25] in this area, and it would be of interest to
see these tools also incorporated into the undergraduate computer
engineering curriculum.

References
[1] Steven Bell. 2023. Reimagining the digital lab with $30 FPGAs. In Proc. of ASEE

Annual Conference & Exposition. 16 pages.
[2] Cocotb. Accessed Feb. 2025. COroutine based COsimulation TestBench. https:

//www.cocotb.org/.
[3] Gwenhael Goavec-Merou et al. Accessed Feb. 2025. openFPGALoader: universal

utility for loading FPGA. https://trabucayre.github.io/openFPGALoader/.
[4] Sarah Harris and David Harris. 2022. Digital Design and Computer Architecture,

RISC-V Edition. Morgan Kaufmann.
[5] Masahiro Hiramori. Accessed Feb. 2025. Verilog-HDL/SystemVerilog/Bluespec

SystemVerilog support for VS Code. https://marketplace.visualstudio.com/items?
itemName=mshr-h.VerilogHDL.

[6] André Knörig, Reto Wettach, and Jonathan Cohen. 2009. Fritzing: a tool for
advancing electronic prototyping for designers. In Proc. of 3rd International
Conference on Tangible and Embedded Interaction. 351–358.

[7] Mikael Koskinen, Tommi Mikkonen, and Pekka Abrahamsson. 2019. Containers
in software development: A systematic mapping study. In Proc. of International
Conference on Product-Focused Software Process Improvement. Springer, 176–191.

[8] Marek Materzok. 2019. DigitalJS: A visual Verilog simulator for teaching. In Proc.
of 8th Computer Science Education Research Conference. ACM, 110–115.

[9] Fischer Moseley. Accessed Feb. 2025. Manta: A Configurable and Approach-
able Tool for FPGA Debugging and Rapid Prototyping. https://github.com/
fischermoseley/manta.

[10] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. 2017. Cloud
container technologies: a state-of-the-art review. IEEE Transactions on Cloud
Computing 7, 3 (2017), 677–692.

[11] David A Poplawski. 2007. A pedagogically targeted logic design and simulation
tool. In Proc. of Workshop on Computer Architecture Education. 1–7.

[12] RISC-V Collaboration. Accessed Feb. 2025. RISC-V GNU Compiler Toolchain.
https://github.com/riscv-collab/riscv-gnu-toolchain/.

[13] David Shah, Eddie Hung, Clifford Wolf, Serge Bazanski, Dan Gisselquist, and
Miodrag Milanovic. 2019. Yosys+ nextpnr: an open source framework from Ver-
ilog to bitstream for commercial FPGAs. In Proc. of 27th International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 1–4.

[14] Bill Siever. Accessed Feb. 2025. JLS: Java Logic Simulator. https://github.com/
bsiever/JLS/.

[15] Bill Siever. Accessed Mar. 2025. Tools for Digital Logic and Computer Design.
https://github.com/digital-logic-and-computer-design/upduino-devcontainer.

[16] Bill Siever, Michael Hall, Jim Feher, and Roger Chamberlain. 2025. Digital Logic,
Computer Architecture, and Dev Containers: Supporting Schools from Little to
Large. In Proc. of 56th ACM Technical Symposium on Computer Science Education,
Vol. 2. 1737.

[17] Wilson Snyder. 2018. Verilator 4.0: open simulation goes multithreaded. In Open
Source Digital Design Conference (ORConf).

[18] Marion Sudvarg, Chenfeng Zhao, Ye Htet, Meagan Konst, Thomas Lang, Nick
Song, Roger D. Chamberlain, Jeremy Buhler, and James H. Buckley. 2024. HLS Tak-
ing Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne In-
strument. In Proc. of 21st Int’l Conference on Computing Frontiers. ACM, 11 pages.

[19] Shao-Ce Sun. Accessed Feb. 2025. Most Comprehensive RISC-V ASM Highlight-
ing. https://marketplace.visualstudio.com/items?itemName=sunshaoce.RISC-V.

[20] UPduino. Accessed Feb. 2025. UPduino-v3.0 and 3.1. https://github.com/digital-
logic-and-computer-design/UPduino-v3.0/.

[21] Venus. Accessed Feb. 2025. Venus RISC-V instruction set simulator built for
education. https://github.com/ThaumicMekanism/venus.

[22] Venus – VS Code. Accessed Feb. 2025. RISC-V Venus Simulator embedded in VS
Code. https://github.com/hm-riscv/vscode-riscv-venus.

[23] Stephen Williams. Accessed Feb. 2025. The ICARUS Verilog Compilation System.
https://github.com/steveicarus/iverilog.

[24] Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys-a free Verilog
synthesis suite. In Proc. of 21st Austrian Workshop on Microelectronics (Austrochip).
6 pages.

[25] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendorffer, and Deming
Chen. 2022. ScaleHLS: A scalable high-level synthesis framework with multi-level
transformations and optimizations. In Proc. of 59th ACM/IEEE Design Automation
Conference. ACM, 1355–1358.

[26] YoWASP. Accessed Feb. 2025. Unofficial WebAssembly-based packages for Yosys,
nextpnr, and more. https://yowasp.org/.

41

