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Tput, Latency, Occupancy =  f (Circuit, Tech, C, N, S, RS, λ)

Model definition:

Variable Definition

Circuit Logical circuit description (e.g. written in Verilog or VHDL)

Tech Target technology (e.g. Magnetologic, FPGA, or ASIC)

C Pipeline depth (fine-grain contexts)

N Total number of contexts (requires secondary memory if N>C)

S Cost of a context switch (for secondary memory)

RS Scheduling period (number of rounds of C contexts that execute 

before context-switching to secondary memory)

λ Arrival rate (e.g. data elements per second)

OL Offered load (the ratio of the aggregate arrival rate (of all streams) 

to the peak service rate of the system (i.e., when S = 0))

Total achievable throughput:

Waiting time expressions:

(Latency)

M/G/1 modeling expressions

Service rate:

Motivation

Virtualized Logic Computation

Queueing Model Secure Hash Algorithm (SHA-2) Results

Linear Congruential Generator (LCG) Results Conclusions and Future Work

Magnetologic gates
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Shared logic computation
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e.g. N=4, C=2, RS=2,  S=2

Hierarchical round-robin schedule at input
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SpinFET Magnetic Tunnel Junction

Magnetologic circuit with feedback
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Conclusions

• Using the M/G/1 model, we show the relationship between 

circuit parameters, offered load, throughput, and latency.

• We show dramatic aggregate throughput gains when multiple 

“virtual” copies of a (deeply pipelined) magnetologic circuit 

are exploited.

• Virtualized logic computations are able to utilize deeply 

pipelined circuits.

Future Work

• Generalize the arrival process assumptions (Markovian) to 

incorporate other distributions.  A real system may act quite 

differently (e.g. buffering up data and sending in bursts).

• Extend the model to support additional scheduling 

algorithms.  The current scheduling algorithm (hierarchical 

round-robin) is not work-conserving (an empty queue will still 

get scheduled).

Random Numbers Bytes

Single-stream throughput 200 million/s 760 MiB/s

Total achievable throughput 20 billion/s 75 GiB/s

• Estimate a pipeline depth at C = 100 (the ratio of 32-bit adder 

delay to fanout-4 (FO4) inverter delay is approximately 50, and 

LCG requires two adders).

• 20 GHz clock rate (tCLK = 50 ps) (for a SpinFET MTJ in Nikonov

and Young 2013)

Conventional gates propagate 

signals combinationally.

Magnetologic gates have state, 

meaning that each gate may act 

as a pipeline stage.

For a large circuit, this can 

become a deeply pipelined circuit.

Given:

• Tech=Magnetologic, N=2C, S=2,000, OL varies

• Circuit=SHA-256 / 512

Design Params:  RS

Secure Hash Algorithm (SHA-2) Total achievable throughput plot

Latency and schedule period optimization plots

Linear Congruential Generator (LCG)

Results Tech=Magnetologic, N=C, S=0

where a = 65,539.
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