

Motivation

SpinFET Magnetic Tunnel Junction

Nikonov and Young, "Overview of beyond-CMOS devices and a uniform methodology for their benchmarking," Proceedings of the IEEE, vol. 101, no. 12, Dec. 2013

Magnetologic gates

Conventional gates propagate signals combinationally.

Magnetologic gates have state, meaning that each gate may act as a pipeline stage.

For a large circuit, this can become a deeply pipelined circuit.

Magnetologic circuit with feedback

Virtualized Logic Computation

Virtualization of Deeply Pipelined Magnetologic

Michael J. Hall, Roger D. Chamberlain Department of Computer Science and Engineering

Queueing Model

Model definition:

Tput, L	atency, Occupancy = f(Circuit, Tech,
Variable	Definition
Circuit	Logical circuit description (e.g. written in Verilo
Tech	Target technology (e.g. Magnetologic, FPGA, o
С	Pipeline depth (fine-grain contexts)
N	Total number of contexts (requires secondary
S	Cost of a context switch (for secondary memory
R_{S}	Scheduling period (number of rounds of C con before context-switching to secondary memory
λ	Arrival rate (e.g. data elements per second)
OL	Offered load (the ratio of the aggregate arrival to the peak service rate of the system (i.e., wh

M/G/1 modeling expressions

Service rate:	$\mu_s = \frac{R_S}{(R_S N + S N/C) \cdot t_{CLK}} \text{ elements/s}$
Total achievable throughput:	$T_{TOT} = N \cdot \mu_s = \frac{R_S}{(R_S + S/C) \cdot t_{CLK}}$ elements/s
Waiting time expressions: (Latency)	$W = C \cdot t_{CLK} + \left[\frac{(1-p_s) T_V t_{CLK}}{2}\right] + \left[\frac{p_s C \cdot t_s}{2}\right] + \left[\frac{\lambda C^2 t_{CLK}^2}{2(1-\rho)}\right] + \left[\frac{\rho T_V t_{CLK}}{(1-\rho) R_S}\right] \text{ seconds}$
	$T_V = R_S \left(N - C \right) + SN/C \qquad p_s = \frac{R_S C}{R_S N + SN}$
	$ ho = \lambda/\mu_s \qquad OL = N \cdot \lambda \cdot t_{CLK}$

Hall and Chamberlain, "Using M/G/1 queueing models with vacations to analyze virtualized logic computations," in 2015 33rd IEEE International Conference on Computer Design (ICCD), Oct 2015, pp. 78–85.

Linear Congruential Generator (LCG) Results

Linear Congruential Generator (LCG)

Seed –	a	→X
	Feedback path	

Estimate a pipeline depth at C = 100 (the ratio of 32-bit adder delay to fanout-4 (FO4) inverter delay is approximately 50, and LCG requires two adders).

20 GHz clock rate (t_{CLK} = 50 ps) (for a SpinFET MTJ in Nikonov and Young 2013)

Resul	<u>ts</u>	<i>Tech</i> =Mag	netologi	c, <i>N=C</i>	S=0

	Random Numbers	Ву
Single-stream throughput	200 million/s	760
Total achievable throughput	20 billion/s	75

Supported by Exegy, Inc., and VelociData, Inc.

Secure Hash Algorithm (SHA-2) Results

C, *N*, *S*, *R*_{*S*}, λ)

og or VHDL) or ASIC)

memory if N>C)

ntexts that execute

I rate (of all streams) hen S = 0))

 $\overline{N/C}$

65,539.

Secure Hash Algorithm (SHA-2)

Given:

- *Tech*=Magnetologic, *N*=2*C*, *S*=2,000, *OL* varies
- *Circuit*=SHA-256 / 512
- Design Params: $R_{\rm S}$

Latency and schedule period optimization plots

Conclusions and Future Work

Conclusions

- Using the M/G/1 model, we show the relationship between circuit parameters, offered load, throughput, and latency.
- We show dramatic aggregate throughput gains when multiple "virtual" copies of a (deeply pipelined) magnetologic circuit are exploited.
- Virtualized logic computations are able to utilize deeply pipelined circuits.

Future Work

- Generalize the arrival process assumptions (Markovian) to incorporate other distributions. A real system may act quite differently (e.g. buffering up data and sending in bursts).
- Extend the model to support additional scheduling algorithms. The current scheduling algorithm (hierarchical round-robin) is not work-conserving (an empty queue will still get scheduled).