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Research Objective

◼ Design a custom microchip which can be used by 

nuclear physicists when they perform experiments.

◼ In these experiments, physicists use detectors to 

sense radiation.

◼ These experiments often require that the physicists 

identify the type of radiation (α particle, γ-ray, etc) 

that struck the detector.
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NSF Proposal (Funded)

◼ $200,000 grant funded by NSF from 
September 2006 to August 2008.

◼ Design, simulate, and fabricate a custom 
integrated circuit for particle identification 
suitable for use with
 CsI(Tl)  (used for charge-particle discrimination)

 Liquid Scintillator  (used for neutron-gamma 
discrimination)

◼ 8 channel “prototype” chip

◼ 16 channel “production” chip

◼ Funded by NSF grant #06118996.
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Intended Applications

◼ The chip will be used in an experiment at 

the National Superconducting Cyclotron 

Laboratory (NSCL) in Fall 2008 by 

Washington University collaborators.

◼ Mass production of PSD technology is 

actively being sought by our government’s 

Department of Homeland Security.
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Typical Experiment



7

Chip and Sensor Array

Earlier IC developed in our lab currently being used in 

Physics experiments around the country

HiRA Detector Array at MSU
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Overview of Pulse Shape Discrimination 

(PSD) System
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◼ Detector (PMT or photodiode)

◼ External discriminators (CFDs)

◼ External delay lines so we can start 

integrations before arrival of pulse

◼ External control voltages determine Delay and 

Width of integration periods

◼ Outputs A, B, C integrator voltages and 

relative time, T

Image taken from a diploma thesis by Mikael Höök titled 

“Study of the pulse shape as a means to identify neutrons 

and gammas in a NE213 detector”.
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System Model

◼ Many different detectors can be used.

◼ The pulse is amplified through a transresistive gain 
stage.

◼ It is then integrated over a particular region.
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Simulated input pulses for CsI(Tl)

◼ Integrators
 Early         0 to   400 ns

 Late    1500 to 3000 ns

◼ Integration periods at the beginning of the signal are assumed to start before 

the pulse (at -5 ns).
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Integrator Model

◼ Simple integrator model with a dominant pole

◼ Derived response characterizes the integrator and is 
used for analytical derivations of the system noise

C

A(s)

R
Vi1

V
i2

Vo

  ∫

Ideal 
Integral

ΣVi1

Vi2

Σ

Gain

τint

τint + τu

1

1 + s·τo

LPF

1

1 + s·τo

LPF

Vo

Gain

τint

τint + τu τint

1



12

Noise Sources

◼ Poisson – noise due to 
random arrival of discrete 
electrons

◼ Electronics Noise
 Jitter – noise created by an 

uncertainty in the integration start 
time and in the width of the integration 
period

 RI – thermal noise from the integrating 
resistor sampled onto the integrating 
capacitor

 OTAt+ – continuous additive input-
referred thermal noise of the op amp

 OTAt,smpl – thermal noise of the op amp 
sampled onto the integrating capacitor

 OTAf+ – continuous additive input-
referred 1/f noise of the op amp

 OTAf,smpl – 1/f noise of the op amp 
sampled onto the integrating capacitor

◼ ADC – quantization noise of an analog-
to-digital converter with n-bit resolution
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Derived Noise Equations
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Noise breakdown for CsI(Tl)
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1/f noise

◼ Currently it represents an 
unrealistic worst case

◼ Can be improved by 
correlated double sampling if 
mostly constant

◼ Plan to numerically simulate 
1/f noise in order to get an 
empirical equation

1/f noise spectrum

10 dB/decade
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Analytical Predictions of Variance of 

Angular PSD Plots
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Pulse shape discrimination plot for CsI(Tl)

1/f noise included No 1/f noise

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

PSD (Pulse Shape Discrimination) Plot

Late Integrator  (mV)

E
a

rl
y
 I
n

te
g

ra
to

r 
 (

m
V

)

 

 

Alpha

Proton

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800
PSD (Pulse Shape Discrimination) Plot

Late Integrator  (mV)
E

a
rl
y
 I
n

te
g

ra
to

r 
 (

m
V

)
 

 

Alpha

Proton

Energy Max:  100 MeV

Includes all noise sources



18

Hypothesis Testing
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Angular histogram plot for CsI(Tl)
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Optimization

◼ Pulse shape discrimination can be improved by 
optimizing the integration regions under a pulse.

◼ Figure of merit (FOM) is computed as the difference 
between the means divided by the square root of 
the sum of the variances.

◼ Maximizing the FOM will improve discrimination by 
spreading the angles of the particles and reducing 
noise.
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Integrating for energy for CsI(Tl)
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Summary of CsI(Tl)

◼ CsI(Tl) is a slow detector which produces pulses 
with long time constants.

◼ 1/f noise greatly affects system performance in the 
longer integration regions which is why we need to 
come up with a better equation.

◼ For CsI(Tl), we can discriminate between an alpha 
and a proton particle down to between 283 keV and 
1.55 MeV for a 1% probability of a misclassification.
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Summary of liquid scintillator

◼ Liquid scintillator is a fast detector which produces 
pulses with short time constants and requires more 
gain.

◼ 1/f noise also affects the system performance of this 
detector.

◼ For liquid scintillator, we can discriminate between a 
neutron and a gamma particle down to between 
535 keVee and 1.44 MeVee for a 1% probability of 
a misclassification.
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Conclusion

◼ Proposed IC can be used with many different detectors and for many 
different applications.

◼ Although the main purpose of this IC is pulse shape discrimination, it 
can also be used as a general purpose integrator to get energy 
information.

◼ Equations were derived that predict the noise at the output of an 
integrator.  The performance of pulse shape discrimination depends 
on the signal-to-noise ratio of the individual integrators.

◼ Optimizing the integration regions under a pulse can improve pulse 
shape discrimination.  A figure of merit was defined in order quantify 
the performance of the PSD system.

◼ We need a better understanding of 1/f noise to more accurately 
predict system performance.  Correlated double sampling may be 
necessary to deal with 1/f noise.
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