Evaluating MTJ Benefits and Utilizing
Context-Switched Hardware for
Designing Magnetologic Circults

Michael Hall

Advisor: Dr. Roger Chamberlain
Co-advisor: Dr. Viktor Gruev
Washington University in St. Louis

May 23, 2013




Magnetic Tunnel Junction (MTJ) Uses

Memory Clocking Logic

R . [ Dy
L P

v Clock Source B Clock Sink/sub-tree

_Do_

7

SPIN TORQUE MRAM

Commercially Proposing to investigate:
available
Magnetic Global Context-Switched

Clocking Hardware



—!
Outline

“Introduction & Motivation ‘

N

Clocking Research

‘Context-Switching Research |

A\

Conclusion

rd
f
|

\




S — I
Magnetic Tunnel Junction (MTJ)

Demonstrated at 45 nm
[Lin et al. 2009]

Top electrode

Free layer
Insulato
Fixed la

Bottom electrode

o Thin-film magnetic device
0 Set via field or current
0 Read via resistance output
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Modern clock distribution

0 Clock distribution tree (on-chip) L]
Predominate way to distribute clock Y
Use tree-like structure and clock buffers P{ }{

to balance signal propagation to every
flip-flop in synchronous logic circuits

Power consumption: > 25% on modern processors
[Ranganathan 2007]

Clock skew: 3.8% in CELL processor at 3.2 GHz
[Ranganathan 2007]

Area. Also significant




Global magnetic clocking
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O | propose to:

= Investigate global magnetic field with MTJs for clock distribution
O Similar to optical clock distribution in free space described by [Goodman et al. 1984].

= Design a resistance-to-voltage read circuit for sensing MTJ resistance
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Effectively piioelined stages

Logic design using MTlJs (also called “magnetologic™)
No one way to design

Latching of logic output

= Pipeline nature of logic

Want to exploit latching property



C-slow transformation [Leiserson and Saxe 1991]

Sequential Circuit C-Slow Sequential Circuit

O Replace every register with C o C pipeline stages can process C

registers. Interleaved data streams.
o Improve clock frequency if o C-slow transformation allows
registers evenly distributed circuit to be context-switched.

(accomplished via retiming).



Benefits of C-slow

1. Concurrently use hardware for multiple streams

2. Increase in clock frequency

3. Increase in total throughput when resource limited



Related work

O C-slow

= Weaver et al. 2003 applied C-slow to achieve
speedup on specialized hardware.

10



—!

Context-switched hardware

0 | propose to investigate context-switching in
hardware.

0 Types of context-switching:
Fine-grain — C-slow
o Ex. Hyper-threading on a processor.
Coarse-grain — Store contexts in secondary memory
o Ex. Operating system context-switch of a running program.
o Applicable to FPGA, ASIC, and magnetologic
technologies.
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Clocking research

O Fabricated a test chip
Test on-chip resistance-to-voltage read circuit
Test global clocking circuits

0 Will use read circuit results in a model for a
standard cell design to emulate magnetic
clocking.
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Clocking research questions

1. What is the power, speed, area, and jitter of a
MTJ read circuit?

2. What is the tradeoff in power, speed, and area
between magnetic global clocking and on-
chip clock distribution?
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Related work: read circuit

0 Current-conveyor with current comparator

Au et al., “A novel current-mode sensing scheme
for magnetic tunnel junction MRAM,” |IEEE
Transactions on Magnetics, vol. 40, no. 2, pp.
483488, Mar. 2004.
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Proposed: Design, layout, and simulation of MTJ
read circuit across process technologies
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Proposed: Design, layout, simulation, and
fabrication of test chip

MTJ-CMOS Wirebonded System CMOS Test Chip Layout
(3M2P 0.5 pm)
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Proposed: Testing the chip

O Build testing infrastructure PCB board layout
= Build PCB board
=  Write FPGA firmware
=  Write PC software
= Troubleshoot test setup

0 Stimulate and test fabricated chip

= Measure power and speed MTJ read
circuit.

= Test global clocking circuits.
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Proposed: Compare tradeoffs between on-chip
clock distribution and magnetic clocking

0 Measure power, area, and speed of standard
cell designs.

o For magnetic clocking:
Create custom standard cell of MTJ read circulit.

Replace top-level clock buffers with custom cell
and rip out top-level clock routing.

19
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Status of work

Noise analysis of current conveyor circuit [Hall et al. 2011].
Simulations of complete MTJ read circuit design [Hall et al. 2012].
Fabricated test chip and PCB board.

TBD: Populate PCB board, write FPGA firmware and PC software.
TBD: Test global clocking in chip and measure MTJ read circuit.

TBD: Compare tradeoffs between on-chip clock distribution and
magnetic clocking.

O O O O O 4d
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Context-switching research questions

How do we build effective context-switchable hardware?

1. What are suitable models of the performance and resource
utilization of context-switchable hardware?

2. What are good guidelines for choosing between designs?

3. What are optimal schedules for context-switching including
when there is a tradeoff between throughput and latency?

22



Property of magnetologic
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Fig. 4. Magneto-logic gate (a) AND, (b) OR, (¢) NOR, (d) NAND, (¢) XOR, and
(f) XNOR.

,,,,,,,,,,,,,,,,

0 Context-switching can be
- S. Lee, S. Choa, S. Lee, and H. Shin, “Magneto-logic device based on a
used for mag N Eto I Og IC b ut single-layer magnetic tunnel junction,” IEEE Transactions on Electron
. g Devices, vol. 54, no. 8, pp. 2040-2044, Aug. 2007.
IS not dependent on it.

O It can also be used in
FPGASs and ASICs.
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Context-switching in hardware

Secondary
Memory

0 Dashed rectangles are gates in magnetologic
and combinational logic (CL) followed by a
memory element in CMOS.



Workload Characteristics

Depth of combinational logic ]

Amount of logic ]

Size of register state ]

| Characteristics

| Schedule of arrivals
: Workload _
[ Burstiness of data Input Streams . Computation

Memory requirements ]
Size of 1/0

[ Arrival rate

YN
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Design Space

Fine-grain C-slow

Parallel (P)

Context-switch options Coarse-grain with secondary memory

Single, tagged (ST)
Single, untagged (SUT)

None

Address lines to RAM memory

Fixed

Round-robin

Context flow-control

Flow-control

Scheduling Longest data available time

Data flow-control

Context+data flow-control

Dynamic
Next in queue

Round-robin + next in queue
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Interfaces

(a) Parallel (b) Single tagged

0 0 Data | ~ | ~ | ~ | ~
Tag | B | B | C | A

HW

MUX
DEMUX

Data ~ ~ ~ ~ 3 |[HW| —>» - .
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Schedules

U Fixed schedule

O Fixed schedule with secondary memory

O Dynamic schedule with secondary memory

“  Data availability
“ Oldest data available first
“ Round robin + data availability
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Proposed: Workload applications

1. Synthetic Cosine Feedback Function 2. AES Encryption Cipher
(CBC Block Mode)

Initialization Vector (1V) Plaintext
b
® O CIITIIIT) COCIITIIL
In \
4 >—CO5 > —> Out : ;
Feedback Ke AES Blo:;kCipher
path y Encryption
Feedback path l
b
A
LTI T[]
Ciphertext

3. Future real-world application to be
developed at Velocidata this summer
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Proposed: Exploration of design space

0 Interfaces: parallel, single tagged

0 Schedules: fixed, dynamic

0 Implementation: fine-grain, coarse-grain
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Proposed: Model performance and resource
utilization of context-switched hardware

0o Why do this: To guide the design process

0 Inputs: workload, design, technology

0 Outputs: ex. area, power, clock frequency, stream latency,
total throughput, utilization of pipeline, throughput-area
efficiency, limit on C, cost of a context-switch, etc.

31
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Total throughput model

te Propagation time of combinational logic
WL Workload params (e.g. Nr = # of rounds)
C # of pipeline stages

o Stdev. of delay between pipeline stages
T1ot Predicted total throughput

0o C-slow example:

1
Clock Period

Tror =

1
Clock Period =t (WL) - c +o0(WL)-vVC -1

32



Curve fit of total throughput for AES

Workload Application: AES Encryption Cipher (CBC block mode)

Number of Rounds, Nr=4 Number of Rounds, Nr =14

Total Throughput
Tror [Melements/s]

1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50
Pipeline Depth, C Pipeline Depth, C

Curve fit equation:

1
TTOT = 1/ (5772 iri'S/nld . J_IIT\!'ITT) . E —+ (1672 ns — 53.14ps/rnd . f\"r'?‘) VO =1
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Status of work

Developed two workload applications: Synthetic Cosine, AES
Developed parallel interface, C-slow for both workloads.
Completed a case study comparing replication vs. parallel interface.
TBD: Further development of context-switched hardware.

TBD: Develop models of performance and resource utilization.
TBD: Determine set of guidelines for design selection.

TBD: Write tool to generate context-switch hardware.

O O OO 0o 0 Od
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Conclusion

o WIill investigate magnetic global clocking
Develop a resistance-to-voltage read circuit.

Case study to evaluate potential benefit (power, area,
clock skew) of magnetic global clocking

o Will investigate context-switched hardware

Model performance and resource utilization and develop
set of guidelines for design selection

Build a tool to automatically context-switch hardware

36
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