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What this dissertation is about

 This dissertation presents work on:

◼ A resistance-to-voltage read circuit using a continuous 

read for sensing magnetic tunnel junctions (MTJs) 

motivated by magnetic global clocking as a way to 

distribute a clock signal

◼ Hardware virtualization as a way to utilize deeply-

pipelined circuits with feedback motivated by 

magnetologic circuits that are inherently deeply-pipelined 

circuits with feedback
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Magnetic Tunnel Junction (MTJ)

 Thin-film magnetic device

 Set via field or current

 Read via resistance output
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Demonstrated at 45 nm

[Lin et al. 2009]



MTJ properties

 Radiation-hard

 Non-volatile

 High write endurance

 Can be integrated on chip in the CMOS process
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Magnetic Tunnel Junction (MTJ) Uses
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Memory Clocking Logic
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Investigate:
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Magnetologic

 Conventional gates 

propagate signals 

combinationally

 Magnetologic gates have 

state, meaning that each 

gate is a pipeline stage

 For a large circuit, this can 

become a deeply-pipelined 

circuit
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Conventional gates

Magnetologic gates

[Lee et al. 2008]
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Magnetologic gates (cont.)

 Most digital systems have a feedback path

 We want to exploit the deeply-pipelined nature of 

magnetologic circuits when feedback is present
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Pipeline stages



Research questions

 How can we read an MTJ device continuously?

 What can we learn about the read circuit with 

switching resistance inputs?

 How can we go about designing digital systems that 

are deeply-pipelined with feedback?
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This work

 We explore two aspects of MTJ uses:

◼ An experimental MTJ continuous read circuit

◼ Hardware virtualization for utilizing deeply-

pipelined logic circuits
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Outline
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Read circuit design issues

 We target a magnetic clocking application

◼ Requires continuous read operation

◼ Needs to produce a logic voltage output

 Need to build a resistance-to-voltage read 

circuit with a continuous read

 Expect large input capacitance due to MTJ connections

 Choose a current-mode read circuit design

◼ Existing current-mode read circuits in the literature are current 

conveyors used in memories for reading MTJs but these are sampled, 

not continuous

◼ Continuous-mode current read is new 11



Overview of my approach

Read circuit

MTJ REF

Output
 Sense MTJ resistance

 Compare to reference

 Produce logic output

 Three parts to the resistance-

to-voltage read circuit:

◼ Current conveyor (MTJ 

sensing)

◼ Current comparator

◼ Output buffer
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Basic current conveyor

 Feedback path formed by 

current mirrors M1,3 and 

M2,4

 Output current mirror 

formed by M1,5

 Basic operation

◼ Vbias is clamped over Rmtj

◼ This produces current 

Imtj = Vbias / Rmtj

◼ Imtj is copied to the output
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Resistance-to-voltage (R2V) read circuit
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Instrumented read circuit for testing

 Fabricated a prototype 

test chip in a 3M2P 

0.5 μm process

 Read circuit testable 

with multiple input 

sources

 We test using resistors
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Results

 Simulated in Cadence Design Environment using Spectre in 

3M2P 0.5 μm process

 Measurements made experimentally from the fabricated 

prototype test chip
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Printed circuit board with chip Prototype test chip



Measured transient response

 Functionally working read 

circuit

 Nominal RL = 500 Ω and 

RH = 1 kΩ

 Vmtj tracks Vbias with an 

offset

 Setting an appropriate Ith, 

the Iout and MCLK outputs 

follow the Rmtj input
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Simulated and measured performance

Simulation of bandwidth on 

the bottleneck node

Measurement of fCLKIN max
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fCLKIN= 48 MHz

Current comparator output node

Input node is relatively insensitive to 

node capacitance and can handle up to 

low 10s of pF



Measured range of Vbias

 Measured as low as Vbias = 50 mV

 Nominal RL is as high as Vbias = 0.2 V

 Nominal RH is as high as Vbias = 0.4 V

 Vbias range:  ≈ 50 mV to 0.2 V

 This range covers the voltages that we would want to 

operate MTJs at.
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Measured dynamic stability range

 Blue lines are the Iout 

current for RL and RH 

resistances

 Green X’s are the 

measured limits of Ith 

between which the output 

is stable
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Measured output waveforms
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Full stable output waveform
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Summary for read circuit

 Designed, fabricated, and tested a resistance-to-voltage (R2V) 

read circuit

 Now, we can distribute a global clock using MTJs because 

we can read from them continuously

◼ Still need to test with a real MTJ

◼ For global clocking, still need to generate the magnetic field
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Other thesis results

 [Sec. 3.1]  Noise analysis of the current conveyor circuit

 [Sec. 3.1.4]  Design guidance for tuning circuit parameters

 [Sec. 3.3]  Simulation results of other properties of the read 

circuit

 [Sec. 4.3]  Additional empirical measurements taken from the 

fabricated chip
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Magnetologic gates

 To utilize these pipeline stages, we are going to 

virtualize this computation
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Pipeline stages



SHA-256 application
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 Each round (RND) performs a series of operations on a block 

of data propagating through to the output

◼ Rotations, logical operations, and additions

 Long propagation delay → Large clock period
27



M
U

X

1

2

3

64

FIFOs

D
E

M
U

X

1

2

3

64

64-slow SHA-256

R

N

D

R

N

D

R

N

D

1 2 64

SHA-256

R

N

D

3

 Apply C-slow to this circuit with C = 64

 We now have 64 virtual copies
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[Leiserson and Saxe 1991]
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C-slow general virtualized hardware
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C-slow general virtualized hardware
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Queueing model

32

μS
λ1

λ2

λN

μS

μS

λ3 μS

Queueing model

 Each queueing station is modeled as an M/G/1 

queueing model with vacations

 M/G/1 is Markovian, or memoryless, arrival 

process; General service process; and 1 server

C

L

C

L

C

L

1 2 C

x z

y

Secondary 

Memory

M
U

X

1

2

3

N

FIFOs

D
E

M
U

X

1

2

3

N

HW block



Model definition
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Tput, Latency, Occupancy  =  f (Circuit, Tech, C, N, S, RS, λ)

Variable Definition

Circuit Logical circuit description (e.g. SHA-256)

Tech Target technology (e.g. MTJ, FPGA, or ASIC)

C Pipeline depth (also represents the number of fine-grain contexts)

N Total number of contexts (requires secondary memory if N > C)

S Cost of a context switch (to/from secondary memory)

RS Scheduling period (number of rounds of C contexts that execute 

before doing a context switch to secondary memory)

λ Arrival rate (e.g. data elements per second)



Performance model
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Variable Definition

C Pipeline depth

N Number of streams

S Context switch cost

RS Scheduling period

λ Mean arrival rate

ρ Utilization

Mean service time

Service time second 

moment

Mean vacation 

waiting

X

2X

V

Total achievable throughput:

Total wait time (latency):

Number in queue:



Ways to use the model in design

 Subset of parameters are given

◼ Eg. Circuit, Tech, N, C, S

 Remainder under control of 

designer

◼ Eg. RS, λ

 Design goal

◼ Eg. Latency
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Tput, Latency, Occupancy  =  f (Circuit, Tech, C, N, S, RS, λ)

Model definition:

Variable Definition

C Pipeline depth

N Total contexts

S Cost of a context switch

RS Scheduling period

λ Arrival rate



Example Design 

Case 1

 Givens:

◼ Circuit=SHA-256, 

Tech=MTJ, N=2C, 

C=491, S=2000, 

λ varies

 Design params:

◼ RS

 Optimize:

◼ Latency
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Note, Offered Load (OL) is λ normalized

C Pipeline depth S Cost of a context switch

N Total contexts RS Scheduling period



Example Design 

Case 2

 Givens:

◼ Circuit=COS, 

Tech=FPGA, 

N=C, S=0

 Design params:

◼ C

 Optimize:

◼ Efficiency = Tput/Slices
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Summary of virtualized hardware

 Designed C-slow virtualized hardware

 We can now utilize the pipeline stages of deeply-pipelined 

logic circuits using hardware virtualization

 Developed an M/G/1 queueing model of the virtualized 

hardware with a fixed, hierarchical, round-robin schedule

 We can now optimize the performance of virtualized 

hardware and provide design guidance

◼ For MTJ technology, optimized for minimum latency

◼ When C is a design parameter, co-optimized for high throughput and 

low resource usage
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Other thesis results

 [Sec. 5.1]  Clock period model

 [Sec. 5.2]  M/D/1 queueing model that preceded the M/G/1 model

 [Sec. 5.2.2 and 5.3.4]  Validated the queueing models via a discrete-event 

simulation

 [Sec. 5.4]  Calibration of three C-slowed applications to the clock period 

model and a resource model

 [Sec. 5.5]  Additional results showing ways to use the model for the three 

applications across MTJ, FPGA, and ASIC technologies
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Conclusions
 Designed, fabricated, and tested a resistance-to-voltage read circuit with a 

continuous read

◼ Resilient to high input capacitance

◼ This now allows us to sense MTJs with magnetic clocking to distribute the 

clock signal

 Applied C-slow to virtualize hardware

◼ This now allows us to effectively utilize magnetologic

◼ This is effective across MTJ, FPGA, and ASIC technologies

 Developed a queueing model for virtualized, deeply-pipelined hardware

◼ Useful for design guidance

◼ This now allows us to predict and optimize the performance of virtualized 

hardware 41



Future work

 MTJ read circuit

◼ Test with actual MTJs

◼ Investigate oscillations observed near threshold

 Hardware virtualization

◼ Use a general arrival process

◼ Expand the queueing model to use dynamic 

schedules
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