Globally Clocked Magnetic Logic Circuits

Michael Hall, Albrecht Jander, Roger Chamberlain, Pallavi Dhagat

Washington University in St. Louis

Supported by AFOSR

Spin Valve

Ney et al. 2003

Latch

Master Slave Flip-Flop

Initial Investigation

- □ Assessing implications of
 - Replacing all registers with magnetologic memory elements
 - Replacing the clock distribution tree with a global external clock
- □ Start with standard cell CMOS design
- □ 2 Applications:
 - Monte Carlo (MC) simulation of π [Singla et al. 2008]
 - Systolic array priority queue (PQ) [Leiserson 1979]

Design Process

- □ VT 180 nm standard cell design
- $\Box \text{ HDL} \rightarrow \text{Synthesis} \rightarrow \text{Place & Route}$
- □ Estimate power, area, and speed from layout

9.0 mm

4.9 mm

Benchmark Circuit Properties

	MC	PQ
area	75 mm ²	20 mm ²
cell density	86 %	83 %
power	2.7 W	0.8 W
clk freq.	74 MHz	124 MHz
tech.	180 nm	180 nm

Area and Timing Implications

	MC	PQ
clk net area	4 %	8 %
clk skew	342 ps	239 ps
skew %	3 %	3 %

Activity Level

Fraction of signals that change at each clock

Power Implications

Clock power consumption ranges from 25% to 40%

10

Summary

CMOS Chip	Hybrid Chip
traditional clock distribution tree	global external field
clock routing	eliminated
clock skew	dramatically reduced
clock power	moved off chip

Next Tasks

□ Repeat the measurements at 45 nm

Design and fabricate a prototype

Investigate logic elements in the presence of an external field

Conclusion

- Global clocking via an external magnetic field is an interesting approach to large-scale synchronous system design
- Illustrated an enabled latch and its associated master-slave flip-flop
- Potential benefits are significant
 - 4 to 8 % area savings
 - ~ 200 to 400 ps clock skew elimination
 - 25 to 40 % power savings

Questions?